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Friday, April 26. We continued our discussion of the JCF for 3 × 3 non-diagonalizable matrices A focusing

on the case that pA(x) = (x− λ)3. We saw that this lead to two possible JCFs, namely

λ 1 0
0 λ 0
0 0 λ

, when

dim(Eλ) = 2, or

λ 1 0
0 λ 1
0 0 λ

, when dim(Eλ) = 1. We then worked through an example of each case. When

dim(Eλ) = 2, the process was as follows: (i) Find v2 ̸∈ Eλ, and set v1 := (A − λI)v2 (which will be an
eigenvector for λ). Then choose v3 in Eλ not a multiple of v1. Upon letting P be the 3 × 3 matrix whose

columns are v1, v2, v3 we saw that P−1AP =

λ 1 0
0 λ 0
0 0 λ

.

The second example was a 3×3 matrix with pA(x) = (x−λ)3 and dim(Eλ) = 1. We first calculated (A−λI)2

and took a vector v3 such that (A− λI)2v3 ̸= 0. We then set v2 := (A− λI)v3 and v1 = (A− λI)v2. Upon

doing so, we found that if P is the matrix whose columns are v1, v2, v3, then P−1AP =

λ 1 0
0 λ 1
0 0 λ

.

Wednesday, April 24. We continued our discussion of the JCF, reviewing the definition and both, the form
of the JCF we can put the matrix into and the two facts (a) and (b) from the previous lecture. We then

easily observed that if A is a non-diagonalizable 2 × 2 matrix, the JCF must be of the form

(
λ 1
0 λ

)
. We

then found the JCF of the 2× 2 matrix

(
0 −9
1 6

)
, as well as the change of basis matrix P by following the

steps: (i) Find λ; (ii) Calculate dim(Eλ); (iii) Find v2 such that v2 ̸∈ Eλ; (iv) Take v1 := (A − λI)v2 and
P = [v1 v2].

We next discussed in detail the case that A is a non-diagonalizable 3×3 matrix with pA(x) = (x−λ1)
2(x−λ2),

so that dim(Eλ1
) = 1. In this case, facts (a) and (b) from the previous lecture immediately show that the

JCF of A has the form

λ1 1 0
0 λ1 0
0 0 λ2

. In this case, to find P , the change of basis matrix with columns

v1, v2, v2, one must: (i) Find a vector v2 such that (A−λ1I)
2v2 = 0, but v2 not an eigenvector for λ1, so that

(A − λ1I)v2 ̸= 0; (ii) Set v1 := (A − λ1I)v2; (iii) Take v3 any eigenvector of λ1. We then showed why this

works. First, we have (A− λ1I)v1 = (A− λ1I)
2v2 = 0⃗, which shows that Av1 = λ1v1. Then, by definition,

v1 = (A− λ1I)v2, so that Av2 = v1 + λ1v2. And Av3 = λ2v3. Thus,

A · [v1 v2 v3] = [Av1 Av2 Av3] = [λ1v1 v1 + λ1v2 λ2v3] = [v1 v2 v3] ·

λ1 1 0
0 λ1 0
0 0 λ2

 .

Once one shows that P = [v1 v2 v3] are linearly independent, then P is invertible, and P−1AP =

λ1 1 0
0 λ1 0
0 0 λ2

.

Added after Bonus Problem 6 was turned in. To see that v1, v2, v3 are linearly independent, suppose
av1 + bv2 + cv3 = 0⃗. Apply the matrix (A− λ1I)

2 to both sides of this equation to get:

a(A− λ1I)
2v1 + b(A− λ1I)

2v2 + c(A− λ1I)v3 = 0⃗.
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By definition, (A − λ1I)v2 = 0. And (A − λ1I)
2v1 = 0⃗, because we showed above that (A − λ1I)v1 = 0⃗.

Thus, c(A− λ1I)v2 = 0⃗. However,

(A− λ1I)
2v2 = (A− λ1I){(A− λ1I)v2}

= (A− λ1I){Av2 − λ1v2} = (A− λ1I){(λ2 − λ1)v2}
= (λ2 − λ1)(A− λ1I)(v2) = (λ2 − λ1)(λ2 − λ1)v2.

Thus, from c(A − λ1I)v2 = 0⃗, we have c(λ2 − λ1)
2v2 = 0. Since λ2 − λ1 ̸= 0, we must have c = 0. Thus,

av1 + bv2 = 0. Now apply A − λ1I to this equation. Since (A − λ1I)v1 = 0⃗ and (A − λ1)v2 ̸= 0⃗, we have

b(A−λ1I)v2 = 0⃗ which implies b = 0. Finally, this leaves av1 = 0⃗, so a = 0. Therefore, v1, v2, v3 are linearly
independent.

Monday, April 22. The first fifteen minutes of class were devoted to Quiz 11, followed by seven minutes
allotted for the online course survey. We then began our discussion of the Jordan Canonical Form (JCF)
for linear transformations and matrices. We noted that the JCF always exists when the transformation or
matrix in question has all of its eigenvalues in F = R or C. In particular, the JCF always exists when
working over C. For the scalar λ, we then defined the Jordan block of size s, J(λ, s), to be the s× s matrix
with λ down the diagonal, 1s on the diagonal above the main diagonal and 0s elsewhere. So for example,

when s = 3, we have the Jordan block

λ 1 0
0 λ 1
0 0 λ

. We then stated the following theorem:

Jordan Canonical Form Theorem. Let T : V → V be a finite dimensional vector space over F = R or
C. If F = R, assume that pT (x) has it roots in R. Then there exists a basis α ⊆ V such that [T ]αα = J ,

where J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

 is block diagonal and each block Ji is a Jordan block. Equivalently, if A is

an n × n matrix over F and pA(x) has its roots in F , then there is an invertible matrix P , with entries in
F , such that P−1AP = J , for J as above. In each case, we call J the Jordan canonical form of T or A.

We then noted the following for J the JCF of T or A:

(i) All of the eigenvalues appear among the entries of the Ji and the same eigenvalue can appear more
that one Ji

(ii) We can assume Jordan blocks with the same eigenvalue are adjacent in the matrix J
(iii) We can assume the Jordan blocks associated with the same value appear in decreasing size.
(iv) We call the submatrix consisting of all Jordan blocks associated to a given eigenvalue λ the Jordan

box associated with λ.

We also recorded the following facts that completely determine the JCF for 2 × 2 and 3 × 3 matrices.

Let A be an n × n matrix over F (so that A might be [T ]ββ for some basis β ⊆ V ). Suppose pA(x) =

(x− λ1)
e1 · · · (x− λr)

er .

(a) The Jordan box associated to each λi is an ei × ei matrix.
(b) The number of Jordan blocks in the Jordan box associated to λi is dim(Eλi).

We ended class showing that the JCF of the matrix

(
2 −1
1 0

)
is the matrix

(
1 1
0 1

)
.

Friday, April 19. After recalling the definition of the adjoint of an n × n complex matrix, A, namely
A∗ = (A)t = At, we discussed (but did not prove) the following properties of the adjoint:

Properties of the adjoint. Let A be a complex n× n matrix.

(i) (A∗)∗ = A.
(ii) (AB)∗ = B∗A∗.
(iii) ⟨Av,w⟩ = ⟨v,A∗w⟩, for all v, w ∈ Cn.
(iv) A∗A and AA∗ are self-adjoint.
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(v) The following are equivalent:
(a) AA∗ = In.
(b) A∗A = In.
(c) The columns of A form an orthonormal basis for Cn.
(d) The rows of A form an orthonormal basis for Cn.

We noted that a complex matrix P satisfying the conditions in (v) above is called a unitary matrix. Such a
matrix is the complex analogue of a real orthogonal matrix. We then defined A is be normal if A∗A = AA∗

and noted (but did not prove) the following

Properties of a normal matrix. Suppose A is an n× n complex matrix satisfying A∗A = AA∗,

(i) If λ ∈ C is an eigenvalue of A, then λ is an eigenvalue of A∗.
(ii) ||A∗v|| = ||Av||, for all v ∈ Cn.
(iii) If v1, v2 are eigenvectors of A corresponding to distinct eigenvalues, then ⟨v1, v2⟩ = 0.

We noted that just as in the Spectral Theorem for real symmetric matrices, item (iii) above for normal
matrices plays a crucial role in the complex spectral theorem. We then stated, but did not prove any cases
of the:

Complex Spectral Theorem. Let A be an n × n complex matrix. Then A is normal if and only if it is
orthogonally diagonalizable, i.e., A is normal if and only if there is a unitary matrix P such that P ∗AP = D,
where D is a diagonal matrix. In particular, a self-adjoint complex matrix is orthogonally diagonalizable.

We then considered the normal matrix A =

(
0 1
−1 0

)
and found a unitary matrix P such that P ∗AP =(

i 0
0 −i

)
. We ended class by noting that the singular value decomposition of a complex matrix A is obtained

by the same process used in the case of real matrices, only one starts by finding the eigenvalues of A∗A or
AA∗.

Wednesday, April 17. In preparation for stating the Spectral Theorem for complex matrices, we reviewed
various properties of complex numbers, complex conjugation, and the inner (dot) product of vectors in Cn.
In particular:

Properties of complex numbers. Addition and multiplication of complex numbers are both commutative
and associative; complex multiplication distributes over addition; every complex number has an additive
inverse; every non-zero complex number has a multiplicative inverse.

Properties of conjugation. For z = a+ bi, z = a− bi denotes its conjugate.

(i) z1z2 = z1z2 for all z1, z2 ∈ C.
(ii) z1 + z2 = z1 + z2, for all z1, z2 ∈ C.
(iii) If z = a+ bi, zz = a2 + b2 ∈ R and equals zero if and only if z = 0.

(iv) The modulus or absolute value of z = a+ bi, is |z| :=
√
zz =

√
a2 + b2.

Properties of the inner product of complex vectors. Suppose v, w are column (or row) vectors in
Cn, with coordinates α1, . . . , αn and β1, . . . , βn. Then inner product of ⟨v, w⟩ of v and w is defined as
⟨v, w⟩ := α1β1 + · · ·+ αnβn. We discussed the following properties:

(i) ⟨w, v⟩ = ⟨v, w⟩.
(ii) ⟨λv,w⟩ = λ⟨v, w⟩ and ⟨v, λw⟩ = λ⟨v, w⟩, for all λ ∈ C.
(iii) ⟨v1 + v2, w⟩ = ⟨v1, w⟩+ ⟨v2, w⟩ and ⟨v, w1 + w2⟩ = ⟨v, w1⟩+ ⟨v, w2⟩.
(v) ⟨v, v⟩ is a real number greater than or equal to zero and ⟨v, v⟩ = 0 if and only if v = 0.

(vi) The length of v is defined to be
√
⟨v, v⟩.

(vii) v is defined to be orthogonal to w if and only if ⟨v, w⟩ = 0.
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We ended class by defining the adjoint1 A∗ of an n × n matrix with complex entries to be the conjugate
transpose of A, i.e., A∗ = (A)t = At. We noted in the special case of 2× 2 matrices, if the columns of P are
an orthonormal basis for C2, then P ∗ is the inverse of P .

Monday, April 15. The first 16 minutes of class were devoted to Quiz 10. We then We began class by
restating the Singular Value Decomposition Theorem for an m×n matrix A over R. After this, we sketched
a proof of the existence of the existence of the SVD by giving the following steps (with justification) by
applying the Spectral Theorem to AtA.

Steps to the SVD. Let A be an m× n matrix over R.
(i) Let λ1 ≥ · · · ≥ λr > 0 be the non-zero eigenvalues of AtA. Here r = rank(A).
(ii) Let P be the n× n orthogonal matrix that diagonalizes AtA, so that P−1(AtA)P = D, where D is

the diagonal matrix whose diagonal entries are λ1, . . . , λr, 0, . . . , 0.
(iii) For 1 ≤ i ≤ r, set σi =

√
λi.

(iv) For 1 ≤ i ≤ r, set vi :=
1
σi
ui, where u1, . . . , nn ∈ Rn are the columns of P .

(v) Since v1, . . . , vr form an orthonormal system, extend this set of vectors to an orthonormal basis
v1, . . . ,mm of Rm.

(vi) Letting Q be the orthogonal matrix whose columns are v1, . . . , vm, we have A = Q
∑

P t, where
∑

is the m× n diagonal matrix whose non-zero entries are σ1 ≥ σ2 · · · ≥ σr > 0.

We ended class by noting that a few key facts to the proof sketch we offered are among the properties of
AtA and AAt listed below. We did not prove these facts.

(i) AtA and AAt are symmetric matrices, and hence their eigenvalues are in R.
(ii) The eigenvalues of AtA and AAt are all greater than or equal to zero.
(iii) The matrices AtA and A have the same null space. Similarly, AAt and At have the same null space.
(iv) The matrices A,At, AtA, and AAt all have the same rank.
(v) AtA and AAt have the same non-zero eigenvalues with the same algebraic multiplicities.

It follows that we could also find the SVD of A by starting with the matrix AAT and follow the same steps
as above, except in step (iv), we take vi :=

1
σi
Atui, for 1 ≤ i ≤ r.

Friday, April 12. We spent the class discussing and working an example illustrating the:

Singular Value Decomposition. Let A be an m× n matrix with entries in R. Then over R there exists
an orthogonal m×m matrix Q, an orthogonal n× n matrix P , and an m× n diagonal matrix

∑
such that

A = Q
∑

P t and the non-zero diagonal entries of
∑

are real numbers σ1 ≥ σ2 · · · ≥ σr > 0, where r is the
rank of A. The real numbers σ1, . . . , σr are called the singular values of A.

After stating the SVD, we had a lengthy discussion concerning the following comments:

(i) The SVD gives a pseudo-diagonalization: Q−1AP =
∑

.
(ii) The SVD is obtained by applying the Spectral Theorem to either AtA or AAt.
(iii) An orthogonal matrix corresponds to either a reflection or rotation.
(iv) Thus, multiplication by any m× n matrix A gives linear transformation from Rn → Rm which is a

rotation or reflection of Rn, followed by an elongation, followed a reflection or rotation of Rm.
(v) The SVD gives a pseudo-inverse of A, namely A+ = P

∑+
Qt, where

∑
is the n×m diagonal matrix

with diagonal entries σ−1
1 , . . . , σ−1

r . From this, one gets a solution to the following least squares
problem: Given w ∈ Rm, find a vector v ∈ Rn so that the length ||Av − w|| is minimal, as v ∈ Rn

varies over all possible column vectors. The answer is v0 = A+w.
(vi) Other applications include: data compression, image restoration, noise removal.

We then spent the rest of the class finding the SVD for A =

(
−1 1 0
0 0 2

)
, from the homework of Wednesday,

April 10. The important point here was to follow the general outline presented in that assignment.

Wednesday April 10. We began class by restating the Spectral Theorem for n×n matrices over R and noting
three key facts established along the way: (i) Av · w = vȦw, for column vectors v, w ∈ Rn; (ii) pA(x) has

1IMPORTANT NOTE: The adjoint of A is not the same as the classical adjoint of A.

4



all of its roots in R; (iii) If v1, . . . , vr ∈ R are eigenvectors corresponding to distinct eigenvalues of A, then
v1, . . . , vr are mutually orthogonal.

We then worked through finding an orthogonal matrix diagonalizing A =

1 1 1
1 1 1
1 1 1

, taking care to note

that E0 is the orthogonal complement of E3. This was to illustrate the general reduction process: For an
n× n real symmetric matrix A, first find a single eigenvalue λ1 and unit length eigenvector u1 for λ1. Upon
setting W := Span{u1}, find an orthonormal basis u2, . . . , un for W⊥. Upon setting P := [u1 u2 · · · un],

one has P−1AP =

(
λ1 0
0 B

)
, where 0 denotes the zero row or column vector of length n − 1 and B is a

symmetric (n − 1) × (n − 1) matrix. On then repeats the process on B and continues until A has been
orthogonally diagonalized.

We then started with the matrix A :=

1 0
1 1
0 1

, and showed that there exists an orthogonal 3× 3 matrix

Q and a 2 × 2 orthogonal matrix P such that Q−1AP =
∑

, where
∑

=

√
3 0
0 1
0 0

. Here 3, 1 are the

eigenvalues of the symmetric matrix AtA. It followed that A = QΣP t, which is a special case of the Singular
Value Decomposition of the matrix A.

Monday, April 8. We began class with a few comments on Exam 2. We also stated that students who did
not do well on the exam (or the first midterm exam) will have the option of replacing their lowest midterm
exam score, with their final exam score, assuming it helps their grade.

We then discussed how one reduces the general n× n case of the Spectral Theorem to the (n− 1)× (n− 1)
case. The point is to follow what we did in the lecture of April 5 in reducing the 3× 3 case to the 2× 2 case.
This reduction relied upon the following observations for n× n real symmetric matrices A:

(ii) If λ,λ2 are distinct eigenvalues of A with Av1 = λv2 and Av2 = λ2v2, then v1 · v2 = 0,
(ii) A has all of its eigenvalues in R.

Item (i) above followed from the fact, that if Av1 ·v2 = v1 ·Av2 (dot product) for v1, v2 column vectors in Rn.
Item (ii) followed first by using the Fundamental Theorem of Algebra, which implies that every eigenvalue
of A belongs to C, and then by noting that if (A−λI)(v) = 0, with λ = a+ bi ∈ C, then applying A−λI to

(A− λI)(v) = 0⃗ leads to (A2 − aI)2v + b2b = 0⃗ and dotting with v, ultimately shows that b = 0, so λ ∈ R.
Here we used λ is the complex conjugate of λ.

Friday, April 5. Exam 2.

Wednesday, April 3. The class worked on practice problems for Exam 2.

Monday, April 1. The first fifteen minutes of class were devoted to Quiz 9. We then considered the vector
space V over R with inner product ⟨ , ⟩ and a subspace W ⊆ V . We defined W⊥ (“W perp”), the orthogonal
complement of W , as W⊥ := {v ∈ V | ⟨v, w⟩ = 0, for all w ∈ W}. We noted that, for example, the z-axis
in R3 is the orthogonal complement of the xy-plane in R3. Similarly, if W ⊆ R3 is the plane defined by
ax + by + cz = 0, we noted that W⊥ is the line through the origin containing the vector (a, b, c) and that
perpendicular lines through the origin in R2 give subspaces W and W⊥. This was followed by discussing
and giving a proof of the following proposition:

Proposition. In the notation above, we have:

(i) W⊥ is a subspace of V .
(ii) If {u1, . . . , ur} is an orthonormal basis for W and {ur+1, . . . , un} is such that {u1, . . . , un} ⊆ V is

an orthonormal basis for V , then {ur+1, . . . , un} is an orthonormal basis for W⊥.

The proof of (ii) required extending u1, . . . , ur to a basis u1, . . . , ur, vr+1, . . . , vv for V and then applying
Gram-Schmidt, to get the orthonormal basis u1, . . . , un for V . After concluding the proof of part (ii) we
then noted that the proposition shows that V = W ⊕W⊥.
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We ended class with a brief discussion of the QR factorization of an m × n matrix A over R. This result
states that if the columns of A are linearly independent (and hence n ≤ m), then there are real matrices
Q,R such that: (i) Q is an m× n matrix whose columns form an orthonormal basis for the column space of
A and (ii) R is an n× n upper triangular matrix whose diagonal entries are all positive. In particular, if A
is an n × n invertible matrix, then Q is an orthogonal matrix, i.e., QQt = In. We mentioned that the QR
factorization makes solving least squares problems of the type Ax = b easier, when the system of equations
Ax = b does not have a solution.

Friday, March 29. We discussed at length the Gram-Schmidt process and worked a couple of examples
illustrating it. We began the discussion by seeing how to start with two linearly independent vectors v1, v2
and construct orthogonal vectors w1, w2 so that Span{v1, v2} = Span{w1, w2}. We then looked at the case
of three vectors and were able to derive a formula for the process in general.

Gram-Schmidt Process. Let V be a vector space with inner product ⟨ , ⟩ and suppose {v1, . . . , vr} is a
linearly independent set of vectors. Then there exists an orthogonal set of vectors {w1, . . . , wr} such that
Span{w1, . . . , wr} = Span{v1, . . . , vr}. More over, the vectors w1, . . . , wr can be constructed inductively as
follows:

(i) w1 := v1.
(ii) If w1, . . . , wi have been constructed so that Span{w1, . . . , wi} = Span{v1, . . . , vi} and w1, . . . , wi are

mutually orthogonal then taking

wi+1 = vi+1 −
⟨vi+1, w1⟩
⟨w1, w1⟩

· w1 − · · · − ⟨vi+1, wi⟩
⟨wi, wi⟩

· wi,

we have that Span{w1, . . . , wi+1} = Span{v1, . . . , vi+1} and {w1, . . . , wi+1} is an orthogonal set of
vectors.

It followed immediately from the Gram-Schmidt process that if V is any finite dimensional vector space (for
now, over R) with an inner product, then V admits an orthonormal basis. We ended class by applying the

Gram-Schmidt process to the following basis for R3:

1
0
1

 ,

0
1
1

 ,

1
1
0

.

Wednesday, March 27. We continued our discussion of inner products by looking at the following examples:

(i) V = Rn with the usual dot product as the inner product.

(ii) V = the space of real polynomials of degree less than or equal to n with ⟨f(x), g(x)⟩ :=
∫ b

a
f(x)g(x) dx.

(iii) V = the space on n× n matrices over R with ⟨A,B⟩ := trace(At ·B).
(iv) V = Rn (column vectors) and A, a positive definite symmetric n×n real matrix, with ⟨v, w⟩ := vtAw.

For the examples above, we worked through (iii) for the case of 2 × 2 matrices over R. We then gave the
following definition, emphasizing that equipping the vector space V with an inner product enables us to
establish the following concepts in very general situations.

Definitions. Let V be a vector space over R with inner product ⟨ , ⟩.
(ii) v, w ∈ V are orthogonal if ⟨v, w⟩ = 0.

(ii) The length of v ∈ V is given by ||v|| :=
√
⟨v, v⟩.

(iii) The set of vectors {v1, . . . , vr} ⊆ V is an orthogonal set if ⟨vi, vj⟩ = 0, for all vi ̸= vj .
(iv) The set of vectors {u1, . . . , ur} is orthonormal if it is orthonormal and ||uj || = 1, for all 1 ≤ j ≤ r.

With these definitions in hand, we were able to establish the following:

Two important facts. Let V be a real vector space with an inner product.

(i) If {v1, . . . , vr} is an orthogonal subset of V , then v1, . . . , vr are linearly independent.
(ii) If {u1, . . . , un} is an orthonormal basis for V and v ∈ V , then v = ⟨v, u1⟩u1 + · · ·+ ⟨v, un⟩un.
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We ended class by observing that u1 := 1√
2

−1
1
0

 , u2 := 1√
3

1
1
1

 , u3 := 1√
6

 1
1
−2

 is an orthonormal basis

for R3 and using Fact (ii) above to quickly find x, y, z ∈ R such that

 2
7
13

 = xu1 + yu2 + zu3.

Monday, March 25. The first thirteen minutes of class were devoted to Quiz 8. We then reviewed the basis
properties of the dot product in R3, noting that for vectors v, w ∈ R3 and λ ∈ R,

(i) v · w = w · v.
(ii) (v1 + v2) · w = v1 · w + v2 · w and v · (w1 + w2) = v · w1 + v · w2.
(iii) (λv) · w = λ(v · w) = v · (λw).
(iv) v · v ≥ 0 and v · v = 0 if and only if v = 0⃗.

Two further properties were noted:

(v) ||v|| =
√
v · v, where ||v|| denotes the length of v.

(vi) The angle between v, w is given by cos−1( v·w
||v||||w|| ), so that v · w = 0 if and only v and w are

orthogonal.

We then defined the dot product of vectors v = (a1, . . . , an) and w = (b1, . . . , bn) in Rn as

v · w := a1b1 + · · ·+ anbn,

and similarly if we take column vectors in Rn. We then noted (but did not prove) that properties (i)-(vi)
hold for the dot product in Rn. This lead to the following definitions.

Definitions. Let V be a vector space over R.
(A) A function from V × V to R taking the pair of vectors (v, w) to the real number ⟨v, w⟩ is an inner

product on V if it satisfies properties (i)-(iv) above, namely, for all v, w ∈ V and λ ∈ R,
(i) ⟨v, w⟩ = ⟨w, v⟩.
(ii) ⟨v1 + v2, w⟩ = ⟨v1, w⟩+ ⟨v2, w⟩.
(iii) ⟨λv,w⟩ = λ⟨v, w⟩ = ⟨v, λw⟩.
(iv) ⟨v, v⟩ ≥ 0 and ⟨v, v, ⟩ = 0 if and only if v = 0⃗.

(B) The length ||v|| of the vector v is given by
√
⟨v, v⟩.

(C) The angle between non-zero vectors v, w ∈ V is given by cos−1( ⟨v,w⟩
||v||||w|| ). In particular v and w are

orthogonal if ⟨v, w⟩ = 0.

We ended class by noting that the dot product on Rn is an inner product and that for V , the vector space

of real polynomial of degree less than n, ⟨f(x), g(x)⟩ :=
∫ 1

0
f(x) · g(x) dx defines an inner product on V . We

also noted, but did not fully verify, that if V is the vector space of real 2× 2 matrices, then ⟨A,B⟩ := AtB,
for all A,B ∈ V is an inner product on V .

Friday, March 22. We continued our discussion of the main theorem from the previous lecture. In particular,
we focused on the implication (ii) implies (i) in the case that A is a 7 × 7 matrix whose characteristic
polynomial pA(x) = (x− λ1)

2(x− λ2)
2(x− λ3)

2. The crucial point in our analysis was the following: From
the conditions dim(Eλ1) = 2,dim(Eλ2) = 3,dim(Eλ3) = 3 we showed that putting together bases for each
eigenspace Eλj

gives a basis for R7, leading quickly to the diagonalizability of A.

We then applied the theorem to show that the matrix A =

1 0 2
0 2 −1
0 0 3

 is diagonalizable and found the

diagonalizing matrix P and the matrix B =

1 1 0
0 1 0
0 0 2

 is not diagonalizable.

We ended class by noting the following computation criteria for an n × n matrix A to be diagonalizable,
assuming pA(x)(x − λ1)

e1 · · · (x − λr)
er : A is diagonalizable if and only if for each 1 ≤ i ≤ r, the reduced
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row echelon form of A − λiIn has rank n − ei if and only if for each ≤ i ≤ r, the number of zero rows in
reduced row echelon form of A− λiIn equals ei.

Wednesday, March 20. The first fifteen minutes of class were devoted to Quiz 7.After reviewing some of the
material presented in the previous class, we began a discussion of the following important theorem.

Theorem. Let T : V → V be a linear transformation with V an n dimensional vector space over F and A
an n × n matrix with entries in F . Write pT (x), for the characteristic polynomial of T and pA(x) for the
characteristic polynomial of A. Suppose that λ1, . . . , λr ∈ F are distinct.

(A) The following are equivalent for T :
(i) T is diagonalizable.
(ii) pT (x) = (x− λ1)

e1 · · · (x− λr)
er and dim(Eλi

) = ei, for 1 ≤ i ≤ r.
(iii) pT (x) = (x− λ1)

e1 · · · (x− λr)
er and dim(Eλ1

) + · · ·+ dim(Eλr
) = n.

(B) The following are equivalent for A:
(i) A is diagonalizable.
(ii) pA(x) = (x− λ1)

e1 · · · (x− λr)
er and dim(Eλi

) = ei, for 1 ≤ i ≤ r.
(iii) pA(x) = (x− λ1)

e1 · · · (x− λr)
er and dim(Eλ1

) + · · ·+ dim(Eλr
) = n.

We noted that the eigenspaces Eλi
in part (A) are subspaces of V , while the eigenspaces in (B) consist

of column vectors in Fn. Rather than giving a formal proof of the theorem we did an in depth analysis
of the implication (i) implies (ii) in part (B) by looking at a diagonalizable 7 × 7 matrix A satisfying
P−1AP = D(λ1, λ1, λ2, λ2, λ2, λ3, λ3). We ended class by beginning an analysis of (ii) implies (i) for a 7× 7
matrix A satisfying pA(x) = (x− λ1)

2(x− λ2)
3(x− λ3)

2.

Monday, March 18. We continued our discussion of eigenvectors and eigenvalues, both for a linear transfor-
mation T : V → V (dim(V ) = n), and A, an n×n matrix. After reviewing the definitions from the previous
lectures, we discussed the following important facts.

Fact 1. Suppose v1, . . . , vr ∈ V are eigenvectors of T with distinct eigenvalues λ1, . . . , λr, then v1, . . . , vr
are linearly independent.

Before proving Fact 1, we illustrated this fact with the matrix

(
1 2
4 3

)
, which we ultimately showed was

diagonalizable. The general proof of Fact 1was by contradiction: Assuming the fact was false, by looking at
a non-trivial dependence relation of shortest length among the vj , we were able to derive a shorter depen-
dence relation, thereby deriving a contradiction. We then noted that Fact 1 has the following important
consequence.

Corollary. Suppose T : V → V has n distinct eigenvalues. Then T is diagonalizable.

Before moving on to Fact 2, we noted that Fact 1 and its corollary have easy to obtain analogues for
matrices.

Fact 2. Suppose the characteristic polynomial of T or A has the form (x − λ1)
e1 · · · (x − λr)

er . Then for
each 1 ≤ i ≤ r, Eλi , the eigenspace of λi, has dimension less than or equal to ei. We noted that ei is often
called the algebraic multiplicity of λi and the dimension of Eλi

is often called the geometric multiplicity of
λi.

We sketched a proof of the general argument. The idea being that if, say Eλ1
contains e1 + 1 independent

vectors, then these vectors can be extended to a basis α of V . The matrix [T ]αα is then in block form, with
an upper block being a (e1 + 1)× (e1 + 1) identity matrix with zeros below this block. Using this matrix to
calculate pT (X) gives that pT (x) is divisible by (x− λ1)

e1+1, which cannot happen. Thus, the dimension of
Eλ1 can be no more than e1.

We ended class by stating, but not yet proving, that the matrix A, or the transformation T , is diagonalizable
if and only if pA(X) or PT (x) factors completely as a product of linear polynomials and for each eigenvalue
λi, the geometric multiplicity of λi equals the algebraic multiplicity of λi.

Friday, March 8. We began class by reviewing the definitions of eigenvalue and eigenvector, both for A, an
n× n matrix over F , and a linear transformation T : V → V : Given λ ∈ F , λ is an eigenvalue of A or T if

8



there exists 0 ̸= v ∈ Fn or 0 ̸= v ∈ V such that AV = λv or T (v) = λv. Given A, we set pA(x) :=
∣∣A− xIn

∣∣,
the characteristic polynomial of A. We then noted that λ is an eigenvalue of A if and only if pA(λ) = 0 if
and only if the nullspace of A− λIn is non-zero, and 0 ̸= v is an eigenvector associated to λ if and only if v
belongs to the nullspace of A− λIn. The nullspace of A− λIn is called the eigenspace of λ and is denoted
Eλ. The foregoing also applies to T , since if A and B are two matrices representing T , pA(x) = pB(x), so
that λ is an eigenvalue of T if and only if pA(λ) = 0, for any matrix A representing T . In this case, the
eigenspace associated to λ is Eλ := ker(T − λ · IV ).

We then defined A to be diagonalizable (over F) if there exists an invertible n× n matrix P with entries
in F such that P−1AP = D, a diagonal matrix. The linear transformation T is diagonalizable (over F) if
there exists a basis α of V such that [T ]αα = D. In each case, we noted that the diagonal entries of D are
necessarily the eigenvalues of A or T . We concluded the lecture by analyzing what happens with a 2 × 2
matrix A over R:

(i) If pA(x) has no roots in R, then A is not diagonalizable over R.
(ii) If pA(x) has two distinct roots in R, then A is diagonalizable.

(iii) If pA(x) has a repeated root λ, i.e., pA(x) = (x − λ)2, then either A =

(
λ 0
0 λ

)
or A is not

diagonalizable, because in the latter case case, Eλ is a one-dimensional subspace of R2.

As an example, we noted that the matrix

(
2 1
0 2

)
is not diagonalizable.

Wednesday, March 6. We began class by recalling that in the previous lecture we showed that if A is a 2× 2
real symmetric matrix, then Av1 · v2 = v2 ·Av2, for all column vectors v1, v2 ∈ R2. This lead to the following
definition:

Definition. Let R : R2 → R2 be a linear transformation. Then T is symmetric if for all column vectors
v1, v2 ∈ R2, T (v1) · v2 = v1 · T (v2).

We then presented the following Proposition, proving the only if direction.

Proposition. Let T : R2 → R2 be a linear transformation. Then T is symmetric if and only if for every
orthonormal basis α ⊆ R2, [T ]αα is a symmetric matrix.

We noted that the matrix of a symmetric linear transformation with respect to a basis that is not an
orthonormal basis need not be symmetric, as the following example shows.

Example. Let T : R2 → R2 be defined by T (x, y) := (x + 2y, 2x + y). Then, if E denotes the standard

basis of R2, [T ]EE =

(
1 2
2 1

)
, so the matrix of T with respect to the orthonormal basis E is symmetric. On

the other hand, consider the basis B = {
(
1
1

)
,

(
0
1

)
}, which is not an orthonormal basis. Then it is easy to

check that [T ]BB =

(
3 2
0 −1

)
, which is not symmetric.

This was followed by observing that the converse of the spectral theorem holds, namely, if A is a 2 × 2
matrix over R and there exists an orthogonal matrix P such that P−1AP is a diagonal matrix, then A is
symmetric. We ended class by defining the general concepts of eigenvalues and eigenvectors, both for for n×n
matrices with entries in F = R or C and linear transformations T : V → V , where V is an n-dimensional
vector space over F .

Monday, March 4. The first fifteen minutes of class were devoted to Quiz 6. We then continued our discussion

of the Spectral Theorem, turning our attention to an arbitrary 2×2 real symmetric matrix

(
a b
b c

)
. Through

a series of straightforward calculations, we were able to show:

(i) If p(x) =

∣∣∣∣x− a −b
−b x− c

∣∣∣∣ is the characteristic polynomial of A, then its roots are in R. That is, the

eigenvalues of A are real numbers.
9



(ii) If p(x) has a repeated root, then A =

(
a 0
0 a

)
, and the standard basis for R2 is already an orthonor-

mal basis consisting of eigenvalues for A.
(iii) If A has distinct eigenvalues, say λ1 ̸= λ2 with eigenvectors v1, v2, respectively, then v1 · v2 = 0, i.e.,

v1 and v2 are orthogonal.
(iv) For u1 := 1

||v1|| ·v1 and u2 := 1
||v2|| ·v2, {u1, u2} is an orthonormal basis for R2 consisting of eigenvalues

for A.
(v) If P is the 2 × 2 matrix whose columns are u1, u2, then P is an orthogonal matrix (so P−1 = P t)

and P−1AP =

(
λ1 0
0 λ2

)
.

Friday, March 1. We began class by stating, but not proving, the following important fact. If A and B
are n× n matrices over F , then |AB| = |A| · |B|. We indicated roughly why this formula holds, as follows:
We began by defining an elementary matrix E to be one obtained from In be applying one of the three
standard elementary row operations. We then observed (for 2× 2 matrices) that EA is the matrix obtained
by applying the corresponding elementary row operation directly to A. From our previous discussions, we
have |EA| = |E| · |A|. Since an invertible matrix row reduces to the identity matrix, if A is invertible, we
can write A = E1 · · ·Er as a product of elementary matrices. Thus,

|AB| = |E1 · · ·ErB| = |E1| · · · |Er| · |B| = |E1 · · ·Er| · |B| = |A| · |B|.

We also noted that if A or B has non-zero nullspace, the same applies to AB so both sides of the equation
|AB| = |A| · |B| are zero.

We then began our discussion of the Spectral Theorem over R which states that if A is an n×n symmetric
matrix, then there is an orthonormal basis of Rn consisting of eigenvectors of A, which is equivalent to saying
that there exists an orthogonal matrix P such that P−1AP = D, where D is the diagonal matrix having the
eigenvalues of A down its main diagonal. We noted that an orthogonal matrix is one whose columns form
an orthonormal basis for Rn. We ended class by finding an orthonormal basis consisting of eigenvectors for

the matrix A =

(
1 1
1 1

)
. A key ingredient was that the eigenvectors associated to the two eigenvalues of A

were orthogonal. We also found the orthogonal matrix P satisfying P−1AP =

(
2 0
0 0

)
.

Wednesday, February 28. We continued our discussion of determinants, beginning with recalling the effect
elementary row or column operations have on calculating the determinant of an n×n matrix. We then used
elementary row operations to calculate the determinant of a 3× 3 matrix.

We then discussed the adjoint formula, A · A′ = |A| · In = A′ · A, where A is an n × n matrix over F
and A′ = Ct, for C the n × n matrix whose (i, j)th-entry is (−1)i+j |Aij |, and illustrated this formula by
calculating a few entries in AA′, when A is an arbitrary 3× 3 matrix. We noted that it follows immediately
from the classical adjoint formula that A is invertible with A−1 = 1

|A| ·A
′, if |A| ≠ 0. We then derived:

Cramer’s Rule. Let A be an n× n matrix with coefficients in F , and A ·

x1

...
xn

 =

b1
...
bn

 be a system of

n equations in n unknowns. For each 1 ≤ i ≤ n let Bi be the matrix obtained fro A by replacing its ith

column by

b1
...
bn

. Then, for each 1 ≤ i ≤ n, xi =
|Bi|
|A| .

We ended class by discussing (but not formally proving) the connections between the conditions in the
following theorem:

Theorem. Let A be n n× n matrix with entries in F . The following re equivalent:

(i) |A| ≠ 0.
(ii) A is invertible.
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(iii) The null space of A is zero, i.e., if v ∈ Fn and Av = 0⃗,then v = 0⃗.
(iv) A reduces to In via elementary row operations.
(vi) The rows (respectively, columns) of A are linearly independent.
(vii) The rows (respectively, columns) of A span Fn.
(viii) The rows (respectively, columns) of A form a basis for Fn.
(ix) The linear transformation TA : Fn → Fn is one-to-one and onto.
(x) TA is 1-1.
(xi) TA is onto.
(xii) Any n× n system of linear equation with coefficient matrix A has a unique solution.

Monday, February 26. We began class by briefly discussing Exam 1 and how students might prepare better
for the next exam. We then began our discussion of determinants. After calculating a few examples of
determinants of matrices of different sizes, we gave a formal definition:

Definition. Let A = (aij) be and n× n matrix with entries in F . Then the determinant of A, denoted |A|
or det(A), is defined by the following equations:

|A| =
n∑

j=1

(−1)i+jaij · |Aij | (expansion along the ith row)

=

n∑
i=1

(−1)i+jaij · |Aij | (expansion along the jth column),

where Aij denotes the (n− 1)× (n− 1) matrix obtained from A by deleting its ith row and jth column. We
emphasized that the fact that the different expansions of the determinant always give the same answer is
not an easy fact to prove, and we will just assume that all expansions in the definition give the same result.

We then discussed the following properties of the determinant, thinking of the determinant as a function of
its rows. Letting A denote an n× n matrix over F :

(i) If A′ is obtained form A by multiplying a row (or columns) of A times λ ∈ F , then |A′| = λ · |A|.
(ii) If A′ is obtained from A by interchanging two rows (or tow columns), then |A′| = −|A|.
(iii) If a row (or column) of A consists entirely of 0s, then |A| = 0.
(iv) If tow rows (or columns) of A are the same, then |A| = 0.
(v) If A′ is obtained from A by adding a multiple of one row of A to another row, then |A′| = |A|.
(vi) If A is an upper or lower triangular matrix, then A| is the product of the diagonal entries of A.
(vii) The determinant is a linear function of its rows (or columns)

We ended class by using elementary row operations to calculate the determinant of a 4× 4 matrix.

Friday, February 23. Exam 1.

Wednesday, February 21. We began class with a discussion and proof of the following theorem.

Theorem. Let V be a finite dimensional vector space and T : V → V a linear transformation. The following
statements are equivalent:

(i) T is one-to-one and onto.
(ii) T is one-to-one.
(iii) T is onto.

We noted that this theorem is similar in spirit to our previous theorem stating that for n vectors in an
n-dimensional vector space the following are equivalent: (i) The vectors are linearly independent and span;
(ii) the vectors are linearly independent; (iii) the vectors span. The rest of the class was devoted to group
work on practice problems for Exam 1.

Monday, February 19. The first eighteen minutes of class were devoted to Quiz 5. We then began by recalling
the definitions of the kernel and image of a linear transformation. The majority of the rest of the class was
devoted to a careful proof of the Rank plus Nullity Theorem, as stated in the previous lecture. We ended
class by showing that for the linear transformation T : V → W , T is 1-1 if and only if ker(T ) = {⃗0} and
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noting that T is onto if and only if im(T ) = W . Consequently, if T : V → V and dim(im(T )) = dim(V ),
then T is 1-1.

Friday, February 16. We began class by reviewing the change of basis theorem presented in the previous
lecture. We then discussed, and ultimately proved, a more general change of basis result:

General Change of Basis Theorem. Let T : V → W be a linear transformation. Assume α1, α2 are
bases for V and β1, β2 are bases for W respectively. Then:

[T ]β2
α2

= [IW ]β2

β1
· [T ]β1

α1
· [IV ]α1

α2
,

where IV denotes the identity transformation on V and IW denotes the identity transformation on W .

Writing A := [T ]β1
α1
, B := [T ]β2

α2
, P := [IV ]

α1
α2

and Q := [IW ]β1

β2
, the change of basis formula given above takes

a more familiar form: B = Q−1AP . Again, the proof of the theorem was an application of the second
important formula from the lecture of February 12. We also noted that if V has dimension n, and W has
dimension m, then: A and B are m× n matrices, P is an n× n matrix and Q is an m×m matrix.

We next considered T : V → W and gave the following definitions:

Definitions. (i) The kernel of T (sometimes called the null space of T), denoted ker(T ), is the set of vectors

v ∈ V satisfying T (v) = 0⃗.

(ii) The image of T (sometimes called the range of T), denoted im(T ), is the set of all vectors w ∈ W such
that w = T (v), for some v ∈ V .

We then showed that ker(T ) is a subspace of V and indicated that im(T ) is a subspace of W . This was
followed by stating the following very important theorem. Our book refers to this as the Dimension
Theorem. More commonly, this theorem is referred to as the Rank plus Nullity Theorem, since the dimension
of ker(T ) is often called the nullity of T and the dimension of im(T ) is called the rank of T.

Rank plus Nullity Theorem. Let T : V → W be a linear transformation between the finite dimensional
vector spaces V and W . Then:

dim(V ) = dim(im(T )) + dim(ker(T )).

We ended class by verifying the rank plus nullity theorem for the linear transformation TA : R3 → R3 for A

given by

1 −2 1
3 −1 −1
4 −3 0

.

Wednesday, February 14. We we began by reviewing the Formulas 2 and 3 from the previous lecture. We
also gave a proof of Formula 3 and illustrated Formula 3 with an example. where T : R2 → R3 was given by
T (x, y) = (x+ y, y− x, 2x) and S : R3 → R2 was given by S(x, y, z) = (x+ 2y+ 3z,−y)¡ using the standard
bases for R3 and R2.

We followed this by discussing and proving the following

Change of Basis Theorem. Let T : V → V be a linear transformation, and suppose α1 and α2 are bases
for V . Then

[T ]α2
α2

= [I]α2
α1

· [T ]α1
α1

· [I]α1
α2
,

where I : V → V denotes the identity transformation.

We noted that [I]α1
α2

is the matrix obtained by expressing the vectors in α2 in terms of the vectors in α1 and
that the matrices [I]α1

α2
and [I]α2

α1
are inverses of one another. We also noted that if we write A := [T ]α1

α1
,

B := [T ]α2
α2

and P := [I]α1
α2
, then the change of basis theorem takes the familiar form B = P−1AP .

We ended class by verifying the change of basis theorem for T : R2 → R2 defined by T (x, y) := (x+2y, 2x−y),
α1 = E := {e1, e2}, the standard basis, and α2 = F := {f1, f2}, for f1 := (−1, 1) and f2 := (1, 1).

Monday, February 12. The first thirteen minutes of class were devoted to Quiz 4. We then continued by
establishing our basic set-up. Suppose that T : V → W is a linear transformation of finite dimensional
vector spaces over F = R or C. Let α := {v1, . . . , vn} be a basis for V and β := {w1, . . . , wm} be a basis for
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W . We write [T ]βα for the matrix of T with respect to the bases α and β, as defined in the previous lecture.

We also write [v]α :=

γ1
...
γn

, whenever v = γv1 + · · ·+ γnvn.

We devoted the rest of the class to discussing the following formulas:

Three Important Formulas. 1. For v, u ∈ V amd c, d ∈ F , [cv + du]α = c[v]α + d[u]α.

2. For any v ∈ V , [T (v)]β = [T ]βα · [v]α.
3. If S : W → U is a linear transformation, and γ := {u1, . . . , ut} is a basis for U , then [ST ]γα = [S]γβ · [T ]βα.
We sketched proofs of the first two formulas and did a concrete example verifying Formula 2.

Friday, February 9. We began class by defining the matrix of a linear transformation with respect bases, as
follows:

Definition. Suppose that T : V → W is a linear transformation of finite dimensional vector spaces. Let
α := {v1, . . . , vn} be a basis for V and β := {w1, . . . , wm} be a basis for W . Then the matrix of T with
respect to the bases α and β is the m×n matrix defined by the equations T (vj) =

∑m
i=1 aijwi, for 1 ≤ j ≤ n.

We denote this matrix by [T ]βα. In other words, [T ]βα is the m× n matrix whose jth column is

a1j
...

amj

, for

1 ≤ j ≤ n.

We followed this by computing some examples

Example 1. Suppose A is the real matrix

(
a c e
b d f

)
, and TA : R3 → R2 is given by TA(v) := A · v, for all

column vectors v ∈ R. We showed [TA]
F
E = A, where E is the standard basis for R3 and F is the standard

basis for R2.

Example 2. We then considered the special case in the previous example, where A =

(
1 0 −1
0 1 2

)
, so that,

as above [TA]
F
E = A. We then calculated the matrix of TA with respect to the basis C := {

1
1
0

 ,

0
1
1

 ,

0
0
1

}

for R3 and the basis D := {
(
0
1

)
,

(
1
0

)
} for R2 and obtained [T ]DC =

(
1 3 2
1 −1 1

)
.

Example 3. Letting α denote the standard basis for R2 and T : R2 → R2 defined by T (e1) =

(
8
3

)
and T (e2) =

(
−18
−7

)
, [T ]αα =

(
8 −18
3 −7

)
, while if β := {

(
3
1

)
,

(
2
2

)
}, [T ]ββ =

(
2 0
0 −1

)
, showing that T is

diagonalizable.

We ended class with the following definition.

Definition. Let V be a vector space with basis α := {v1, . . . , vn}. Given v ∈ V , we have a unique expression

v = a1v1 + · · ·+ anvn, for ai ∈ F . We set [v]α :=

a1
...
vn

 ∈ Fn.

We noted that this sets up a nice correspondence between vectors in an arbitrary vectors space V and column
vectors in Fn. This notation also lead to the following property: For v, u ∈ V , c, d ∈ F and α a basis for V ,
show that [cv + dc]α = c[v]α + d[u]β .

Wednesday, February 7. We began by reviewing the definition of linear transformation, and gave four
examples: (i) Multiplication by an m × n matrix as a linear transformation from Rn to Rm; (ii) The
derivative map, as a function from P (n) to P (n); (iii) The trace function from M2×(R) to R; and (iv) The
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rotation map in R2, given by the matrix

(
cos(θ − sin(θ)
sin(θ) cos(θ)

)
. We then presented the following theorem and

its proof (modulo the uniqueness in part (ii)).

Proposition. Let V and W be vector spaces over F and suppose that α := {v1, . . . , vn} is a basis for V .

(i) Suppose T : V → W is a linear transformation. Then T is determined by its values on the basis α.
(ii) We may define a unique linear transformation for V to W by specifying values in W for each vi ∈ α.

The point in (i) is that for any v ∈ V , we may write v = a1v1 + · · ·+ anvn, for ai ∈ F , from which it follows
that

T (v) = T (a1v1 + · · ·+ anvn)

= T (a1v1) + · · ·+ T (anvn)

= a1T (v1) + · · ·+ anT (vn),

showing that T (v) is determined by the values T (vi), for 1 ≤ i ≤ n. The point of (ii) is that if we specify
T (vi) := wi (say), for wi ∈ W , then for any v ∈ V , if v = b1v1+ · · ·+ bnvn, then function T : V → W defined
by T (v) = b1w1 + · · · + bnwn is a linear transformation. In other words, to define a linear transformation
T : V → W , it suffices to assign to each vi ∈ W , a vector wi in W .

We finished class by defining the matrix of a linear transformation with respect to two bases and showed in
a special case how a linear transformation from R2 to R2 is ultimately just multiplication by a 2× 2 matrix.

Monday, February 5. The first thirteen minutes of class were devoted to Quiz 3. We then began a discussion
and proof of the following:

Theorem. Let V be a finite dimensional vector space.

(i) Suppose S ⊆ V is a finite set of vectors satisfying V = Span{S}. Then some subset of S forms a
basis for V .

(ii) Let T ⊆ V be a linearly independent subset. Then T may be extended to a basis.

The proof of this theorem involved applications of the Exchange Theorem from the lecture of February 2.
This gave rise to the following corollary:

Corollary. Suppose V is a vector space of dimension n and S = {v1, . . . , vn} ⊆ V . The following are
equivalent:

(i) S is a basis for V .
(ii) S is linearly independent.
(iii) V = Span{S}.

We then defined the concept of linear transformation: Given vector spaces V,W over F , the function
T : V → W is a linear transformation if: (a) T (v1 + v2) = T (v1) + T (v2) and (b) T (λv) = λT (v), for all
v1, v2, v ∈ V and λ ∈ F .

We ended class by providing the following examples of linear transformations:

(i) T : R2 → R2 defined by T ((α, β)) = (3α+ 2β,−α+ β).
(ii) For an m× n matrix A with entries in R, the function TA : Rn → Rm defined by TA(v) := A · v is a

linear transformation. Here we view the elements of Rn and Rm as column vectors.

Friday, February 2. We began class by restating, discussing, and giving a proof of a special case of the
following theorem:

Exchange Theorem. Let w1, . . . , ws, u1, . . . , ur be vectors in V and set W := Span{w1, . . . , ws}. Assume
that u1, . . . , ur are linearly independent and belong to W . Then r ≤ s. Moreover, after re-indexing the wi’s,
we have W = Span{u1, . . . , ur, wr+1, . . . , ws}. This latter property is called the exchange property.

We then recalled that it follows immediately from the theorem that any two bases for the finite dimensional
vector space V have the same number of elements. This common number is called the dimension of V. We
then noted the dimensions of the following spaces, in each case by exhibiting a basis for the indicated space:

(i) Rn is an n-dimensional vector space over R.
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(ii) The space of n× n matrices over R has dimension n2.

(iii) The vector space of 2 × 2 matrices

(
a b
c d

)
over R such that 3a + 2d = 0 is a three-dimensional

space.
(iv) The solution space to the systems of equations with reduced row echelon augmented matrix(

1 0 3 4 | 0
0 1 −2 6 | 0

)
is a two-dimensional subspace of R4.

Wednesday, January 31. After briefly recalling the notions of linear dependence and linear independence,
we discussed at length the following important principle in linear algebra: In any vector space, the number
of vectors in a linearly independent set of vectors is always less than or equal to the number of vectors in a
spanning set of vectors. We noted that an immediate consequence of this fact is that any two bases for a
finite dimensional vector space have the same number of elements. This enabled us to define the dimension
of a vector space V to be the number of vectors in any basis of V .

To get a feeling for why the principle stated above is true, we considered the following: Suppose v1, v2 ∈ R2

span R2 and u1, u2, u2 ∈ R3 are independent. We wanted to see that in fact, this scenario could not occur. For
this, we saw that we could exchange v1, v2 to get (for example) u1, u2 to span R3. But then the independent
vector u3 would be in Span{u1, u2}, a contradiction. This helps to explain why any linearly independent set
cannot have more elements than any spanning set.

We then showed that Rn has dimension n, C has dimension one as a vector space over C, but C has dimension
two as a vector space over R. This was followed by demonstrating the following:

Proposition. Suppose v1, . . . vn are column vectors in Rn (or Cn), and let A denote the n×n matrix whose
columns are v1, . . . , vn. Then the vectors form a basis for Rn (or Cn) if and only detA) ̸= 0, or equivalently,
A is an invertible matrix.

We finished class by giving examples of vectors that do, and do not, form a basis for R2 or R3 by calculating
determinants and/or using Gaussian elimination.

Monday, January 29. The first thirteen minutes of class were devoted to Quiz 2. We then began class by
recalling what it means for a set of vectors v1, . . . , vr in the vector space V to be either linearly dependent or
linearly independent. In the case where V is the vector space of column vectors in Rn or Cn, we noted that
these conditions can be expressed in terms of the solutions to a homogeneous system of linear equations with
coefficient matrix A, where A is the n × r matrix whose columns are v1, . . . , vr. To wit, the homogeneous

system A ·

x1

...
xn

 = 0⃗ has a non-trivial solution if and only if v1, . . . , vr are linearly dependent. Equivalently,

the homogeneous system A ·

x1

...
xn

 = 0⃗ has a unique solution (namely x1 = 0, . . . , xr = 0) if and only if the

vectors v1, . . . , vr are linearly independent. We then used Gaussian elimination to show that a particular set
of four vectors in R4 was linearly independent.

We followed this by demonstrating the:

Proposition. Suppose W := Span{v1, . . . , vr}, for linearly independent vectors v1, . . . , vr ∈ V . Then
every vector w ∈ W can be written uniquely as a linear combination of v1, . . . , vr. In other words, if
w = α1v1 + · · ·+ αrvr = β1v1 + · · ·+ βrvr, with all αi, βi ∈ F , then αi = βi, for all i.

We ended class by defining a set S ⊆ V of vectors to be a basis for V if it spans V and is linearly
independent. We then gave a few examples, that included the standard basis for R3 and the standard basis
for M2×2(R). We finished by mentioning the important fact that any two bases for a vector space have the
same number of elements.

Friday, January 26. We began with the question: For vectors w, v1, . . . , vr in the vector space V over the
field F , when is w ∈ Span{v1, . . . , vr}? We noted that when V = Rn or Cn, and the vectors w, v1, . . . , vr

15



are column vectors, then w ∈ Span{v1, . . . , vr} if and only if the system of equations given by the matrix

equation A ·

x1

...
xn

 = w has a solution. We also noted that any solution

α1

...
αr

 to the system of equations

gives rise to the relation w = α1v1 + · · · + αrvr. This was then illustrated by using Gaussian elimination
on two specific examples. We then defined the vectors {v1, . . . , vr} to be linearly dependent if there exists

a linear combination α1v1 + · · · + αrvr = 0⃗, with at least one αi ̸= 0. The set of vectors {v1, . . . , vr} is
linearly independent if it is not linearly dependent. We continued by discussing and proving the following
very important proposition - which has the consequence that we may discard a redundant vector from a
set of vectors spanning a subspace W and still span W with one less vector.

Proposition. Vectors v1, . . . , vr ∈ V are linearly dependent if and only if for some 1 ≤ i ≤ r, vi belongs to
Span{v1, . . . , vi−1, vi+1, . . . , vr}. If these conditions hold, then

Span{v1, . . . , vi−1, vi+1, . . . , vr} = Span{v1, . . . , vr}.

We ended class with the observation that ifW := Span{v1, . . . , vr}, by using the concept of linear dependence,
we may remove redundant vectors from our set {v1, . . . , vr} to arrive at a linearly independent generating
set {vi1 , . . . , vis} for W . In other words, vi1 , . . . , vis generate W efficiently.

Wednesday, January 24. The first thirteen minutes of class were devoted to Quiz 1. We then began the
lecture by reviewing the definition of subspace and establishing the following facts about subspaces:

Basic Facts about subspaces. Let V be a vector space over F and W1,W2 ⊆ V be subspaces. Let
S := {v1, . . . , vr} and T := {u1, . . . , us} be subsets of V .

(i) W1 +W2 is a subspace of V , where W1 +W2 := {w1 + w2 | w1 ∈ W1 and w2 ∈ W2}.
(ii) W1 ∩W2 is a subspace of V .
(iii) If W1 = Span{S} and W2 = Span{T}, then W1 +W2 = Span{S ∪ T}.

We then worked the following examples.

Examples. (i) Let W1 be the x-axis in R2 and W2 be the y-axis in R2, then W1 +W2 = R2.

(ii) Let W1 be the xy-plane in R3 and W2 be the z-axis in R3. Then W1 +W2 = R3.

(iii) Let W1 be the line through (0,0,0) containing the vector v1 = (1, 1, 1) and W2 be the line through (0,0,0)
containing the vector v2 = (−1, 0, 1). Then W1+W2 is the plane in R3 spanned by v1 and v2, which is given
parametrically by {((s− t, s, s+ t) | s, t ∈ R}, or algebraically by the equation x− 2y + z = 0.

We ended class with a discussion of the direct sum of two subspaces. We said that V is the direct sum of W1

and W2 if: (i) V = W1 +W2 and W1 ∩W2 = 0⃗. In this case we write V = W1 ⊕W2. We finished with the:

Proposition. Suppose V = W1 ⊕W2, for subspaces W1,W2 ⊆ V .

(i) If w1 ∈ W1, w2 ∈ W2 and w1 + w2 = 0⃗, then w1 = 0⃗ = w2.
(ii) If w1, u1 ∈ W1 and w2, u2 ∈ W2, and w1 + w2 = u1 + u2, then w1 = u1 and w2 = u2.

Friday, January 19. We began class by reviewing the eight axioms that define a vector space V over F = R
or F = C. We then gave proofs of the following vector space properties, noting along the way how they
either follow from the vector space axioms, or a previously established property.

Proposition. Let V be a vector space over F . The following properties hold:

(i) Cancellation holds: For all u, v, w ∈ V , if v + w = v + u, then w = u.

(ii) The additive identity 0⃗ is unique.

(iii) 0 · v = 0⃗, for all v ∈ V .
(iv) For any v ∈ V , its additive inverse −v is unique.
(v) For all λ ∈ F and v ∈ V , −λ · v = −(λv). In particular, −1 · v = −v, for all v ∈ V .

We then defined the concept of a subspace.

Definition. A subset W of the vector space V is a subspace if it satisfies the following conditions:
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(i) w1 + w2 ∈ W , for all w1, w2 ∈ W .
(ii) λw ∈ W , for all λ ∈ F and w ∈ W .

After demonstrating that 0⃗ ∈ W and −w ∈ W , for all w ∈ W , we noted that all remaining vector space
axioms hold for W by virtue of them holding for V , so that W is a vector space in its own right, under
the operations associated with V - which is the standard definition of subspace. We then noted that: lines
through the origin in R2 are subspaces of R2; lines and planes through the origin in R3 are subspaces of
R3; The solution set (as elements of Rn) to a homogeneous system of m linear equations in n unknown is a
subspace of Rn; the set of all linear combinations of a finite set of vectors forms a subspace of the ambient
vector space. This led to the following definition.

Definition. Let V be a vector space over F and v1, . . . , vr ∈ V be finitely many vectors. Then the subspace
spanned by v1, . . . , vr, denoted Span{v1, . . . , vr} or ⟨v1, . . . , vr⟩, is the set of all vectors of the form

α1v1 + α2v2 + · · ·+ αrvr, (∗)

where α1, α2, . . . , αr ∈ F . Any expression of the form (*) above is called a linear combination of v1, . . . , vr.
We then noted that the set of all expressions (*) does indeed forms a subspace of V .

We ended class by observing the that unit vectors e1, e2, e3 ∈ R3 span R3 and that adding any other vector
to this set gives a set that still spans R3, but does so inefficiently. We also noted that if A1, A2, A3, A4 are
the distinct 2 × 2 matrices having one entry 1 and the remaining entries 0, then the space of 2 × 2 real
matrices is spanned by A1, A2, A3, A4.

Wednesday, January 17. We began class by looking at examples of vector spaces, initially, the vector space
R3 of column vectors defined over the real numbers. Beginning with the basic properties of vector addition,

where for v1 =

α1

β1

γ1

 and v2 =

α2

β2

γ2

, v1 + v2 :=

α1 + α2

β1 + β2

γ1 + γ2

, and scalar multiplication, λv1 :=

λα1

λβ1

λγ1

,

we discussed the following properties (and verified a few of them), all which follow from similar familiar
properties of R:

(i) The zero vector 0⃗ =

0
0
0

 has the property that 0⃗ + v = v, for all v ∈ R3. (Existence of additive

identity).

(ii) For v =

α
β
γ

, −v + v = 0⃗, where −v :=

−α
−β
−γ

. (Existence of additive inverses)

(iii) v1 + v2 = v2 + v1, for all v1, v2 ∈ R3. (Commutativity of addition)
(iv) v1 + (v2 + v3) = (v1 + v2) + v3, for all vi ∈ R3. (Associativity of addition).
(v) λ(v1 + v2) = λv1 + λv2, for all λ ∈ R and vi ∈ R3. (First distributive property)
(vi) (λ+ γ)v = λv + γv, for all λ, γ ∈ R and v ∈ R3. (Second distributive property)
(vii) (λγ)v = λ(γv), for all λ, γ ∈ R and v ∈ R3. (Associativity of scalar multiplication)
(viii) 1 · v = v, for all v ∈ R3.

We then looked at the vector space P (2) of polynomials of degree two or less over R and noted that since a
typical element in P (2) has the form α + βx+ γx2, when we add two expressions of this form, or multiply
them by a scalar, the resulting expressions look very similar to what we get when we add or scalar multiply
vectors in R3. Something similar happens, if, for example, we take three vectors u, v, w ∈ R17 and consider
all expressions of the form αu+ βv + γw. This gives a vector space that looks very similar to R3 and P (2).
These examples show the advantage of defining vector spaces in an abstract setting in a way that captures
all of the properties of particular vector spaces we might encounter in different contexts. This lead to the
following:

Definition. Let F denote either R or C. A vector space over F is a set V together with two operations,
addition of elements of V and multiplication of elements from F times elements in V , satisfying the eight
properties above:
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(i) There exists a zero vector 0⃗ ∈ V satisfying v + 0⃗ = v, for all v ∈ V . (Existence of additive identity).

(ii) For each v ∈ V , there exists −v ∈ V such that v +−v = 0⃗. (Existence of additive inverses)
(iii) v1 + v2 = v2 + v1, for all v1, v2 ∈ V . (Commutativity of addition)
(iv) v1 + (v2 + v3) = (v1 + v2) + v3, for all vi ∈ V . (Associativity of addition).
(v) λ(v1 + v2) = λv1 + λv2, for all λ ∈ F and vi ∈ V . (First distributive property)
(vi) (λ+ γ)v = λv + γv, for all λ, γ ∈ F and v ∈ V . (Second distributive property)
(vii) (λγ)v = λ(γv), for all λ, γ ∈ F and v ∈ V . (Associativity of scalar multiplication)
(viii) 1 · v = v, for all v ∈ R3.

We also noted that Rn and M2(R), the set of 2× 2 matrices over R, form vector spaces over R and Cn, with
coordinate-wise addition and scalar multiplication, is a vector space over C. We ended class by noting that
in an abstract vector space, additive identities and additive inverses are unique.
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